
Linux security, one year later. . .

Nicolas Bareil

EADS Innovation Works
Suresnes, France

IT Defense

Nicolas Bareil Linux security, what happened in 2010? 1/40

About

This talk

Describes what happened in 2010:

New vulnerability classes

New protections

New ideas

This talk is not

A rant (on the contrary)

A long (and boring) list of vulnerabilities

Nicolas Bareil Linux security, what happened in 2010? 2/40

The next hour. . .

Both points of view are analyzed:

1 Attacker side

2 Defensive

Nicolas Bareil Linux security, what happened in 2010? 3/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

Plan

1 mmap min addr bypass
NULL pointer dereference

Problematic
Exploitation
Patch

Bypassing
Frontier override
Memory mapping

2 Uninitialized kernel variables

3 Kernel stack expansion
Memory layout

Nicolas Bareil Linux security, what happened in 2010? 4/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

NULL pointer dereference

NULL pointer dereference

The vulnerability class of 2009

sock−>ops−>send page (sock , ppos , pipe , l en , f l a g s) ;

What happens when sock−>opts == NULL?

Just a DoS in userspace (except for VM)

Arbitrary code execution in kernel space

Dispersed by Julien Tinnes, Tavis Ormandy and Brad Spengler.

Nicolas Bareil Linux security, what happened in 2010? 5/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

NULL pointer dereference

NULL pointer dereference

The vulnerability class of 2009

sock−>ops−>send page (sock , ppos , pipe , l en , f l a g s) ;

What happens when sock−>opts == NULL?

Just a DoS in userspace (except for VM)

Arbitrary code execution in kernel space

Dispersed by Julien Tinnes, Tavis Ormandy and Brad Spengler.

Nicolas Bareil Linux security, what happened in 2010? 5/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

NULL pointer dereference

Principle

a process can map the first memory page (0–4096)

no segregation between kernel and user memory

When the kernel dereferences a NULL pointer, it will use the
userspace pages if mapped.

Nicolas Bareil Linux security, what happened in 2010? 6/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

NULL pointer dereference

Exploiting

Function pointer dereference

sock−>ops−>send page (sock , ppos , pipe , l en , f l a g s) ;

Just drop off your shellcode at address offsetof (sock−>ops, send page)

Read/Write dereference

p i p e = f i l e −>f p a t h . dentry−>d inode−> i p i p e ;

Fake a structure that will feed interesting values in order to control
the execution path.

Nicolas Bareil Linux security, what happened in 2010? 7/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

NULL pointer dereference

Proactive measure

The Right Way (tm)

Not having the bug in the first place is obviously the best. But we
know some will slip through anyway. How to avoid that those bugs
become exploitable privilege escalation vulnerabilities ?

heavyweight/complex but effective : PaX UDEREF

lightweight/simple: mmap min addr, adopted by mainstream

Nicolas Bareil Linux security, what happened in 2010? 8/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

NULL pointer dereference

mmap min addr

Forbid processes to map pages below a limit:

Configured with /proc/sys/vm/mmap min addr

Very simple but with some shortcomings

Nicolas Bareil Linux security, what happened in 2010? 9/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

NULL pointer dereference

mmap min addr

Forbid processes to map pages below a limit:

Configured with /proc/sys/vm/mmap min addr

Very simple but with some shortcomings

Nicolas Bareil Linux security, what happened in 2010? 9/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

NULL pointer dereference

Mouse and cat

Game started, security researchers found several ways to bypass it:

Places where the security check is missing,

Special-cases disabling checks

Side effects

At least 6 ways were found in 2009. . .

Nicolas Bareil Linux security, what happened in 2010? 10/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

Bypassing

Mouse and cat continues. . .

In 2010, two ways were published:

CVE-2010-4258: set_fs() override1

CVE-2010-4346: Memory mapping instantiation2

1http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4258
2http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4346

Nicolas Bareil Linux security, what happened in 2010? 11/40

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4258
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-4346

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

Bypassing

Kernel’s own hack

Kernel memory is mapped into all processes memory. Thanks to
MMU, the process (ring 3) cannot access to kernel memory. When
processing a system call, the kernel may have to write data to
addresses provided by the process. The kernel checks that these
addresses really belong to process’ memory and not to kernel’s
memory. That prevents this kind of thing:

read(fd, 0xc1000000, 1)

access ok()

Compares the pointer to a frontier (PAGE_OFFSET):

Below is the user space
Above is the kernel

Nicolas Bareil Linux security, what happened in 2010? 12/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

Bypassing

When kernel cheats. . .

Sometimes, the kernel needs to use syscalls for its own usage, so the
check shall not be made. . .

Hack spotted!

To prevent code duplications, a dirty trick is used: modifying the
value of the frontier.
It makes access_ok() always returning true.

The frontier value modification is very limited in
time!

Nicolas Bareil Linux security, what happened in 2010? 13/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

Bypassing

. . . bad things happen: CVE-2010-4258

Objective

Trigger a NULL pointer dereference in this temporary context.

Nelson Elhage found that when an assertion failure is encountered
(with a BUG() or an Oops), the kernel calls do exit() on the
triggering process.

Gotcha! Now find a pointer access!

Nicolas Bareil Linux security, what happened in 2010? 14/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

Bypassing

. . . bad things happen: CVE-2010-4258

Objective

Trigger a NULL pointer dereference in this temporary context.

Nelson Elhage found that when an assertion failure is encountered
(with a BUG() or an Oops), the kernel calls do exit() on the
triggering process.

Gotcha! Now find a pointer access!

Nicolas Bareil Linux security, what happened in 2010? 14/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

Bypassing

Exploiting do exit()

man set tid address:

When clear_child_tid is set, and the process exits, and the process was

sharing memory with other processes or threads, then 0 is written at

this address...

BUG() -> do_exit() -> clear_child_tid -> access_ok()

Kernel normally checks that the given address belongs to the
parent. . . with access ok() in the temporary context: attacker can
write a 0 anywhere in virtual memory.

Nicolas Bareil Linux security, what happened in 2010? 15/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

Bypassing

CVE-2010-4346: install special mapping

At execve() time, kernel maps ELF sections to memory. Tavis
Ormandy found a way to map the VDSO page one page below the
mmap min addr limit.

On RHEL, mmap_min_addr == 4096

⇒ VDSO mapped at 0x00000000

Nicolas Bareil Linux security, what happened in 2010? 16/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

s t r u c t {
s h o r t a ;
char b ;
i n t c ;

} s ;

s . a = X ;
s . b = Y ;
s . c = Z ;

c o p y t o u s e r (to , &s , s i z e o f s) ;

Padding byte between .b and .c

Leaked to user land

A process can keep hitting this
code path in order to reveal
sensible material eventually

Nicolas Bareil Linux security, what happened in 2010? 17/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

Naive fix

Obvious fix

Put a memset(&s, ’\0’, sizeof s) before initializing the
structure.

What is not so obvious. . .

C99 ignores totally padding issues, so the compiler is free to
optimize code and can make the following assumptions:

Considering the memset() call as a “dead store” as every
structure’s member are initialized

Later, when assigning .b, compilers can overflow in the
padding if needed

Nicolas Bareil Linux security, what happened in 2010? 18/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

Kernel relies on compiler side-effects

Current GCC behavior is not intentional and could change in the
future.

Possible solutions:

CERT proposed the normalization of memset_s(), which
would never be subject to “dead store removal” optimization.

Explicitly define the padding bytes and mark the structure with
the __packed__ attribute.

Nicolas Bareil Linux security, what happened in 2010? 19/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

Memory layout

Memory layout

stack

unused

thread info

Stack grows down

Kernel tasks have a limited stack
size: 2 pages max

Limit is “conventional”: no guard
page

Expansion leads to expands on
thread info structure.

Nicolas Bareil Linux security, what happened in 2010? 20/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

Memory layout

Stack expansion: CVE-2010-3848

stack

unused

thread info

Objective

Find a function where stack size is
controled by attacker somehow.

Nelson Elhage found this behavior in
econet sendmsg()

Nicolas Bareil Linux security, what happened in 2010? 21/40

mmap min addr bypass Uninitialized kernel variables Kernel stack expansion

Memory layout

Stack expansion in econet sendmsg()

s t a t i c i n t econet sendmsg (s t r u c t k i o c b ∗ iocb , s t r u c t s o c k e t ∗ sock ,
s t r u c t msghdr ∗msg , s i z e t l e n)

{
s t r u c t sock ∗ sk = sock−>sk ;
s t r u c t s o c k a d d r e c ∗ saddr=(s t r u c t s o c k a d d r e c ∗)msg−>msg name ;
s t r u c t n e t d e v i c e ∗dev ;
. . .
s t r u c t msghdr udpmsg ;
s t r u c t i o v e c i o v [msg−>m s g i o v l e n +1];
s t r u c t aunhdr ah ;

iov local variable is sized dynamically by a user-controlled length.

Nicolas Bareil Linux security, what happened in 2010? 22/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

Plan

4 Tighter permissions

5 Information leak

6 Enforcing read-only pages to kernel data

7 Disabling module auto-loading
UDEREF support for AMD64

Nicolas Bareil Linux security, what happened in 2010? 23/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

Too much information

/proc, /dev, /sys and /debug are full of pseudo-files which are
gold mines to an attacker.

Addresses

Processes (PID, memory mapping, environment [not so long
ago], signals, statistics, etc.)

Internal statistics

Theses files are world-readable. . . and even world-writable for some

Nicolas Bareil Linux security, what happened in 2010? 24/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

CVE-2010-4347: Embarrassing

Fuzzer discovered that /sys/.../acpi/custom method was
world-writable.

Any3 user could upload custom methods to ACPI tables! Oops.

3/debugfs needs to be mounted
Nicolas Bareil Linux security, what happened in 2010? 25/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

Information leak: addresses

Impact

Memory corruption vulnerabilities require to know at least one
address to jump or write into.
⇒ Bruteforcing is not an option in kernel land.

Not needed! Every symbols are available:

/proc/kallsyms lists functions addresses

/proc/modules for modules address

. . .

grep -El ’0x[0-9A-Fa-f]{8}’ /proc -r 2> /dev/null

Nicolas Bareil Linux security, what happened in 2010? 26/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

Information leak: addresses

Impact

Memory corruption vulnerabilities require to know at least one
address to jump or write into.
⇒ Bruteforcing is not an option in kernel land.

Not needed! Every symbols are available:

/proc/kallsyms lists functions addresses

/proc/modules for modules address

. . .

grep -El ’0x[0-9A-Fa-f]{8}’ /proc -r 2> /dev/null

Nicolas Bareil Linux security, what happened in 2010? 26/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

Limiting leaks: easy?

Rule #1: Never break user space!

Kernel must deal with broken legacy program. . . and have to live
with it.

Rule #2: System must be debuggable

Developers sometimes have to work on “one-shot bug report”, they
can’t ask the reporter to add printk().

Nicolas Bareil Linux security, what happened in 2010? 27/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

Limiting leaks: proposed solutions

Change permissions

Replace addresses with arbitrary values

XOR displayed addresses with a secret value

Nicolas Bareil Linux security, what happened in 2010? 28/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

Limiting leaks: proposed solutions

Change permissions: breaks rule #1
klogd segfaults if it cannot open /proc/kallsyms

Replace addresses with arbitrary values

XOR displayed addresses with a secret value

Nicolas Bareil Linux security, what happened in 2010? 28/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

Limiting leaks: proposed solutions

Change permissions: breaks rule #1
klogd segfaults if it cannot open /proc/kallsyms

Replace addresses with arbitrary values: breaks rule #2

XOR displayed addresses with a secret value

Nicolas Bareil Linux security, what happened in 2010? 28/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

Limiting leaks: proposed solutions

Change permissions: breaks rule #1
klogd segfaults if it cannot open /proc/kallsyms

Replace addresses with arbitrary values: breaks rule #2

XOR displayed addresses with a secret value: silly

Nicolas Bareil Linux security, what happened in 2010? 28/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

Limiting leaks: proposed solutions

Change permissions: breaks rule #1
klogd segfaults if it cannot open /proc/kallsyms

Replace addresses with arbitrary values: breaks rule #2

XOR displayed addresses with a secret value: silly

Retained solution: compromise

Use a special printk() specifier displaying dummy addresses if
reader not privileged.
⇒ Introduction of the new capability CAP SYSLOG

Nicolas Bareil Linux security, what happened in 2010? 28/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

Memory usage

Currently, kernel does not use pages permissions for his own usage:

Section Permissions

.data READ, WRITE, EXECUTE

constants READ, WRITE, EXECUTE

.text READ, WRITE, EXECUTE

This is like userspace in the 80’s

Nicolas Bareil Linux security, what happened in 2010? 29/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

Hardening memory pages

Obviously, pages should be updated to be

Section Permissions

.data READ, WRITE

constants READ

.text READ, EXECUTE

Work in progress

1 Really set the physical page permissions (when NX available)
2 Declare the maximum of variables4 as const

3 Hide set_kernel_text() entry points

4especially function pointersNicolas Bareil Linux security, what happened in 2010? 30/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

Universal kernel

Vendor world

One kernel for all users: every features need to be present.
To avoid bloating the memory, everything is compiled in dynamically
loaded modules.

Autoloading

Module loading is transparent for user: requesting a feature makes
the kernel load the needed module.
⇒ Cool for attackers: ask for a SCTP socket and it’s ready to be
exploited :)

Nicolas Bareil Linux security, what happened in 2010? 31/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

Universal kernel

Vendor world

One kernel for all users: every features need to be present.
To avoid bloating the memory, everything is compiled in dynamically
loaded modules.

Autoloading

Module loading is transparent for user: requesting a feature makes
the kernel load the needed module.
⇒ Cool for attackers: ask for a SCTP socket and it’s ready to be
exploited :)

Nicolas Bareil Linux security, what happened in 2010? 31/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

Auto-loading

Mitigation

Distributions disable auto-loading for some features
really. . . insecure: X.25, SCTP, etc.

A change was proposed: only privileged users could trigger
auto-loading. But it was rejected for fear of breaking some
legacy users.

Nicolas Bareil Linux security, what happened in 2010? 32/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

Auto-loading

Mitigation

Distributions disable auto-loading for some features
really. . . insecure: X.25, SCTP, etc.

A change was proposed: only privileged users could trigger
auto-loading. But it was rejected for fear of breaking some
legacy users.

Nicolas Bareil Linux security, what happened in 2010? 32/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

UDEREF support for AMD64

UDEREF

PaX feature

Prevents NULL pointer dereference by putting kernel and user
memory in two distinct segments.

Disclaimer

before everything, let’s get out one thing that i’ll probably
repeat every now and then: UDEREF on amd64 isn’t and
will never be the same as on i386. it’s just the way it is, it
cannot be ’fixed’

pageexec, April, 9th, 2010

Nicolas Bareil Linux security, what happened in 2010? 33/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

UDEREF support for AMD64

UDEREF

PaX feature

Prevents NULL pointer dereference by putting kernel and user
memory in two distinct segments.

Disclaimer

before everything, let’s get out one thing that i’ll probably
repeat every now and then: UDEREF on amd64 isn’t and
will never be the same as on i386. it’s just the way it is, it
cannot be ’fixed’

pageexec, April, 9th, 2010

Nicolas Bareil Linux security, what happened in 2010? 33/40

Tighter permissions Information leak Enforcing read-only pages to kernel data Disabling module auto-loading

UDEREF support for AMD64

UDEREF on AMD64

Without segmentation. . .

When switching to kernel mode, PaX moves the process memory at
another address and changes permissions to deny any access.

Shortcomings

This is “just” a shift of the problem

Instead of dereferencing a NULL pointer, attackers needs to
dereference a specific address
But at this point, game is over anyway. . .

Impact on performances: kernel transitions takes a hit

Nicolas Bareil Linux security, what happened in 2010? 34/40

LSM fail Capability is a mess stable tree Hopes for 2011

Plan

8 LSM fail

9 Capability is a mess

10 stable tree

11 Hopes for 2011

Nicolas Bareil Linux security, what happened in 2010? 35/40

LSM fail Capability is a mess stable tree Hopes for 2011

“Linux security module” design fail

The current security callbacks are absolutely nonsensical
random crap slapped all around the kernel. It increases
our security complexity and has thus the opposite effect -
it makes us less secure.
Did no-one think of merging the capabilities checks and
the security subsystem callbacks in some easy-to-use
manner, which makes the default security policy apparent
at first sight?

Ingo Molnar, November 30th, 20105

5http://thread.gmane.org/gmane.linux.kernel/1069948
Nicolas Bareil Linux security, what happened in 2010? 36/40

http://thread.gmane.org/gmane.linux.kernel/1069948

LSM fail Capability is a mess stable tree Hopes for 2011

Capability system is a mess

Quite frankly, the Linux capability system is largely a mess,
with big bundled capacities that don’t make much sense
and are hideously inconvenient with the capability system
used in user space (groups).

H. Peter Anvin, November 29th, 20106

6http://permalink.gmane.org/gmane.linux.kernel.lsm/12196
Nicolas Bareil Linux security, what happened in 2010? 37/40

http://permalink.gmane.org/gmane.linux.kernel.lsm/12196

LSM fail Capability is a mess stable tree Hopes for 2011

-stable branch

>> I realise it wasn’t ready for stable as Linus only pulled
>> it in 2.6.37-rc3, but surely that means this neither of
>> the changes should have gone into 2.6.32.26.
>
> Why didn’t you respond to the review??

I don’t actually read those review emails, there are too
many of them.

Avi Kivity, KVM Maintainer, November 26th, 20107

7http://article.gmane.org/gmane.linux.kernel/1068374
Nicolas Bareil Linux security, what happened in 2010? 38/40

http://article.gmane.org/gmane.linux.kernel/1068374

LSM fail Capability is a mess stable tree Hopes for 2011

Hopes

Raise the cost of exploiting kernel vulnerabilities

We need more proactive measures!

Wishlist:
Rethink LSM architecture

Pathname or label based?

Stackable LSM?

Nicolas Bareil Linux security, what happened in 2010? 39/40

LSM fail Capability is a mess stable tree Hopes for 2011

Thanks!

Full article on http://justanothergeek.chdir.org/

Nicolas Bareil Linux security, what happened in 2010? 40/40

http://justanothergeek.chdir.org/

	Attacker side
	mmap_min_addr bypass
	NULL pointer dereference
	Bypassing

	Uninitialized kernel variables
	Kernel stack expansion
	Memory layout

	Defense
	Tighter permissions
	Information leak
	Enforcing read-only pages to kernel data
	Disabling module auto-loading
	UDEREF support for AMD64

	Food for thoughts
	LSM fail
	Capability is a mess
	stable tree
	Hopes for 2011

